Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems (2024)

Among the many human activities that cause habitat loss (Czech et al. 2000), urban development produces some of the greatest local extinction rates and frequently eliminates the large majority of native species (Vale and Vale 1976, Luniak 1994, Kowarik 1995, Marzluff 2001). Also, urbanization is often more lasting than other types of habitat loss. Throughout much of New England, for example, ecological succession is restoring forest habitat lost from farming and logging, whereas most urbanized areas in that region not only persist but continue to expand and threaten other local ecosystems (Stein et al. 2000).

Another great conservation challenge of urban growth is that it replaces the native species that are lost with widespread “weedy” nonnative species. This replacement constitutes the process of biotic hom*ogenization that threatens to reduce the biological uniqueness of local ecosystems (Blair 2001). Urban-gradient studies show that, for many taxa, for example, plants (Kowarik 1995) and birds and butterflies (Blair and Launer 1997), the number of nonnative species increases toward centers of urbanization, while the number of native species decreases.

The final conservation challenge of sprawl is its current and growing geographical extent (Benfield et al. 1999). A review by Czech and colleagues (2000) finds that urbanization endangers more species and is more geographically ubiquitous in the mainland United States than any other human activity. Species threatened by urbanization also tend to be threatened by agriculture, recreation, roads, and many other human impacts, emphasizing the uniquely far-reaching transformations that accompany urban sprawl.

About 50% of the US population lives in the suburbs, with another 30% living in cities (USCB 2001). Over 5% of the total surface area of the United States is covered by urban and other built-up areas (USCB 2001). This is more land than is covered by the combined total of national and state parks and areas preserved by the Nature Conservancy. More ominously, the growth rate of urban land use is accelerating faster than land preserved as parks or conservation areas by the Conservancy (figure 1). Much of this growth is from the spread of suburban housing. It is estimated, for example, that residential yards occupy 135,000 acres in the state of Missouri (MDC 2002). This residential landscape represents nearly 1% of the total area of Missouri and is nearly three times the area occupied by Missouri state parks.

Here I review the growing literature that documents how urban (and suburban) expansion harms native ecosystems. This knowledge can aid conservation efforts in two major ways. One is through the use of ecological principles—such as preserving remnant natural habitat and restoring modified habitats to promote native species conservation—to reduce the impacts of urbanization on native ecosystems. Rare and endangered species sometimes occur in urbanized habitats (Kendle and Forbes 1997, Godefroid 2001) and thus could be conserved there. Managing the large amount of residential vegetation (1% of the state area, as noted above) in ways that promote native plants and animals could also make a significant contribution to conservation.

A second way in which the study of urban ecology can serve conservation is by helping to develop a more ecologically informed public. Providing a well-informed public could be the most important application of urban ecology, as a means of promoting effective conservation of native species (Kendle and Forbes 1997). Because 80% of the American public lives in or near urban areas, there are many opportunities for creating an informed public that can wield enormous economic and political pressure to promote conservation policies. People who live in urban environments often have a great appreciation of many urban species, such as birds (Clergeau et al. 2001). Indeed, residents of suburban and urban areas tend to place a much higher value on species conservation than those living in rural areas (Kellert 1996). This is reflected in voting behavior: Legislators from highly urbanized states and districts tend to be more supportive of strengthening the Endangered Species Act (Mehmood and Zhang 2001).

Unfortunately, these conservation opportunities are hindered by the very poor ecological knowledge of typical American urbanites. A survey of Texas high school students, for example, showed that 60% of the students misidentified the opossum as a rodent and that ecological understanding of human effects on biota was even poorer; only 2% of the students knew that raccoons tend to benefit from many human activities (Adams et al. 1987).

The urban–rural gradient: General patterns

Urban-to-rural gradient studies examine changes in plants and animals along a transect from the inner city to surrounding, less-altered ecosystems; they also show what happens to surrounding native ecosystems as urban sprawl expands. General patterns that emerge from these studies are described below.

Physical gradients

Physical changes along the gradient strongly influence available habitat for native species. A number of reviews (Sukopp and Werner 1982, Medley et al. 1995, Pickett et al. 2001) show increases in these physical changes, as one moves toward the urban core, in such metrics as human population density, road density, air and soil pollution, average ambient temperature (“heat island” effect), average annual rainfall, soil compaction, soil alkalinity, and other indicators of anthropogenic disturbance. The percentage of area that is impervious surface (pavement, asphalt, buildings) ranges from well over 50% at the urban core to less than 20% at the fringe of urban expansion (figure 2). In addition, the amount of subsidized energy and matter imported for use by humans and available to other species increases toward the urban center (Collins et al. 2000, Pickett et al. 2001).

Habitat-loss gradient

These physical changes produce a gradient of natural habitat loss that steepens from rural areas toward the urban center. As habitat is lost, it becomes increasingly fragmented into more numerous but smaller remnant patches (Medley et al. 1995, Collins et al. 2000). The lost natural habitat is then replaced by four types of altered habitat that become progressively more common toward the urban core. The four types of replacement habitat are listed below, in order of increasing habitability to most native species and decreasing proportion of coverage toward the urban core. The latter three types are based on Whitney (1985).

  1. Built habitat: buildings and sealed surfaces, such as roads

  2. Managed vegetation: residential, commercial, and other regularly maintained green spaces

  3. Ruderal vegetation: empty lots, abandoned farmland, and other green space that is cleared but not managed

  4. Natural remnant vegetation: remaining islands of original vegetation (usually subject to substantial nonnative plant invasion)

Diversity changes along the urban–rural gradient

It is probably intuitive to even the most casual observer that the increasing fragmentation of natural habitat by human disturbances in the direction toward urban centers will tend to reduce species richness (number of species) in that direction. There are, however, many variables that can affect the rate and consistency of species loss along the gradient, so empirical studies are crucial in measuring urban impacts.

Urban core, low diversity

Many studies document that the lowest species diversities along the urban–rural gradient occur in the intensively “built” environments of the urban core. This has been shown for many taxa, including plants (Kowarik 1995), birds and butterflies (Blair 2001), many insects (Denys and Schmidt 1998, McIntyre 2000), and mammals (Mackin-Rogalska et al. 1988). In all these taxa, the number of species at the urban core is reduced to less than half of that found in the rural, more natural areas at the opposite end of the gradient (figure 2).

Blair (2001), for example, found just 7 summer resident bird species in the central business district of Palo Alto, California, compared with 21 species that inhabited a natural area (preserve) outside the city limits. Similar reductions were found for birds and butterflies in other cities, as shown by Blair's (2001), and especially by Marzluff's (2001), comprehensive compilation of studies on urbanization impacts on birds.

Much of the reduction in richness is obviously caused by the loss of vegetation. The number of species of animal taxa, such as birds (Shugart et al. 1975) and insects (Majer 1997), tends to correlate with the number of plants in an area. Also, area covered by vegetation is a good predictor of species numbers for birds (Goldstein et al. 1986); mammals, amphibians, and reptiles (Dickman 1987); and insects (McIntyre 2000).

As over 80% of most central urban areas is covered by pavement and buildings (Sukopp and Werner 1982, Blair and Launer 1997), less than 20%, therefore, remains as vegetated area. Furthermore, the remaining vegetated habitat often contains low plant diversity as a result of erosion, trampling, pollution, invasion or cultivation of a few nonnative species, and many other human disturbances. Also, mowing, pruning, and other common landscaping practices further reduce the volume of the remaining vegetation (Gilbert 1989, Adams 1994).

Suburban diversity: Peak or plunge?

Some studies indicate that species richness tends to be higher in areas with low to moderate levels of human development (such as outlying suburban developments) than in more natural rural areas such as preserves. This suburban peak in species numbers is evident in many taxa, such as mammals (Racey and Euler 1982), birds and butterflies (Blair 2001), bumblebees (Pawlikowski and Pokorniecka 1990), ants (Nuhn and Wright 1979), lizards (Germaine and Wakeling 2000), and plants (Kowarik 1995).

An explanation often suggested for this suburban peak (e.g., Blair and Launer 1997, Germaine and Wakeling 2000, Blair 2001) is the intermediate disturbance hypothesis. The initial human impacts of suburban sprawl are sometimes relatively mild, with only a few housing subdivisions in a matrix of largely natural or agricultural habitat. This promotes environmental heterogeneity, because different habitats occur alongside one another. Such habitat diversity is enhanced by the fact that individual homeowners often make individualistic choices in the plants that they cultivate (Henderson et al. 1998).

In addition to providing spatial heterogeneity, these anthropogenic habitats are typically very productive (Falk 1976), being highly subsidized in scarce resources, ranging from water to nutrients (e.g., fertilizers). Cultivated plants include many ornamentals that often bear fruits and seeds that are utilized by animals, especially birds and bats (Munyenyembe et al. 1989, Adams 1994). Some animals have adapted to the direct consumption of human resources (Adams 1994) that are provided accidentally (garbage) or intentionally (bird food).

In contrast to the above, other studies show that suburban areas have reduced species diversity compared to less-altered rural habitats (figure 2). For example, Marzluff's (2001) compilation of 51 bird studies found that 31 of the studies (61%) showed lower species richness in suburban and other areas of human settlement, compared with more natural rural areas. The remaining 20 studies reported either an increase or no change in diversity with increasing human settlement. The 51 studies covered a wide range of geographic and natural settings, so it is difficult to identify which variables determine whether a rise or fall of species richness occurs with increasing settlement and suburban development.

Teasing apart these variables, such as the role of the natural setting, is clearly a priority for further work on urban–rural gradients. Bell (1986), for example, has suggested that urbanization in a tropical rain forest may have different effects on local species richness than urbanization in other natural settings, because rain forest birds have exceptional difficulty adapting to human settlements.

Local extinctions during housing development

Areas of active development tend to have low biodiversity because of the devastating impact on native species of most residential and commercial development methods. Before construction of most residential and commercial buildings, it is common for developers to remove most vegetation and even topsoil (Sharpe et al. 1986). This reduces construction costs by allowing equipment ready access to the construction site.

A study of the fate of natural vegetation during urban development in Wisconsin found that only about one-third of the original vegetation was not destroyed (Sharpe et al. 1986). The loss of native vegetation (and total vegetated area) has a negative impact on native animal diversity. Bird species richness declined dramatically in the early stages of housing construction (compared to preconstruction diversity) in California (Vale and Vale 1976) and Poland (Luniak 1994).

Once construction is finished, some of the area is paved, which removes it as habitat for nearly all species. In Palo Alto, California, for example, 25% of the area of residential communities is covered by pavement (Blair and Launer 1997); another 20% of the area is covered with housing. Of the remaining nonpaved portions, much is replanted with (usually nonnative) grasses, shrubs, and trees (Wasowski and Wasowski 2000).

Conservation strategies

Habitat conservation can utilize preservation and restoration (figure 2). The most effective (and cheapest in the long term) strategy is to preserve as much remnant natural habitat as possible. Many studies describe how native species richness in a remnant habitat increases with the area of that habitat. This is true for many taxa, including birds (Tilghman 1987), mammals (Dickman 1987), and plants (Dawe 1995).

One way to preserve remnants in housing developments is to retain predevelopment vegetation. A number of recent books, such as The Landscaping Revolution (Wasowski and Wasowski 2000), have pointed out the benefits of retaining preexisting vegetation when building new homes. Unfortunately for conservation goals, this type of construction is rarely undertaken by most residential real estate developers. Although ostensibly related to cheaper costs of mass construction, retaining more predevelopment vegetation is less expensive in the long term (Dorney et al. 1986) and is preferred by many homeowners (Wasowski and Wasowski 2000).

A major influence on natural remnants is the matrix, or the type of habitat, that surrounds them. Remnants are often embedded in a highly disturbed matrix that also serves as a continuous source of nonnative species. A major challenge is that remnant habitats are open to colonization by nonnative species of invasive plants (Luken 1997) and predatory animals such as housecats and dogs (Marzluff 2001). These nonnative invaders and predators can greatly reduce the ability of the remnant habitat to support native species, especially birds. In the language of population biology, these remnants become population “sinks” that are unable to support self-sustaining populations of the native species.

Restoration strategies: Succession and cultivation

Conservation strategy can also focus on restoring native species in managed and ruderal habitats. In natural ecosystems, biotic succession increases the number of plant and animal species after a disturbance (Gibson et al. 2000). This is also true of ruderal and managed habitats that remain undisturbed long enough for succession to occur. Various studies have documented how succession increases species diversity in ruderal and managed communities, for example, increased plant diversity in urban lots (Crowe 1979), increased arthropod diversity in restored communities (Majer 1997), and increased bird species richness in residential communities (Vale and Vale 1976, Munyenyembe et al. 1989, Luniak 1994). As a consequence, older residential areas (usually nearer the urban core) tend to have higher species richness than younger ones (e.g., Munyenyembe et al. 1989).

The studies cited above show that the accumulation rate of new species during succession is initially very rapid and is substantially slower after the first few years and especially after the first decades. Aside from increasing total diversity, ecological succession also often reduces the diversity of non native species in an area (Gibson et al. 2000), many of which rely on disturbance to sustain their populations (Luken 1997).

Another restoration strategy to increase native biodiversity in managed habitats is to cultivate a variety of plant species. Cultivation with native plant species may benefit not only native plant populations but also native animal populations. For example, native bird species richness in Australia (Munyenyembe et al. 1989) and North America (Sears and Anderson 1991) tends to positively correlate with the volume and species diversity of native vegetation. Similarly, the percentage of native insect species in a fauna has been found to correlate with the percentage of native plant species (Crisp et al. 1998). Landscaping golf courses with native plants can benefit many local native bird species (Terman 1997).

Compositional changes along the urban–rural gradient

Species vary in their ability to adapt to the often drastic physical changes along the urban–rural gradient (Gilbert 1989, Adams 1994). Although there are probably many ways to categorize these changes in species composition, many bird (e.g., Goldstein et al. 1986, Maeda and Maruyama 1991, Blair 2001) and mammal (e.g., Nilon and VanDruff 1987) studies have concluded that species along the gradient can be classified, for convenience, into three distinct categories reflecting their reaction to human activities. Using Blair's (2001) terms, these categories are “urban avoiders,” “urban adapters,” and “urban exploiters” (figure 2). While birds are the best-studied taxa for work on urban–rural gradients, these three categories have also been used for work on butterflies (Blair and Launer 1997) and lizards (Germaine and Wakeling 2000).

These categories show that, even in highly modified environments, species are nonrandomly assembled in ways that approximate community assembly processes in nature. Each of these assemblages has a distinctive set of ecological characteristics that reflect the impacts of urban sprawl on native species. One of the most important traits that separates the three categories is the extent to which species depend on human-subsidized resources to exist in an area (Johnston 2001). As subsidized resources increase toward the urban core, there is a concurrent increase in species that utilize them. Urban exploiters are generally commensals that are almost entirely dependent on human subsidies (i.e., obligate parasites). Urban adapters are able to utilize subsidies but are facultative in that they also widely use natural (wild-growing) resources. Urban avoiders tend to rely only on natural resources (Johnston 2001).

Characteristics of urban avoiders, adapters, and exploiters

Because birds, mammals, and, to a lesser extent, plants are the best-studied taxa along urban–rural gradients, they will be the major focus here. Urban avoiders are species that are very sensitive to human persecution and habitat disturbances. The first species to disappear in the proximity of humans are usually large mammals, especially predators, because they are actively persecuted, relatively rare, and have low reproductive rates. Thus, cougars, bison, and elk were among the first to disappear after European settlement began (Matthiae and Stearns 1981). Avian urban avoiders include species adapted to the interior of large, old forests, such as tree-foraging insectivores, neotropical migrants, and many ground-nesting birds that are very sensitive to the presence of humans and pets (Whitcomb et al. 1981, Beissinger and Osborne 1982, Sears and Anderson 1991, Adams 1994). Plant species that are very sensitive to human activities would include late-successional (old-growth) and wetland plants (Stein et al. 2000), the loss of which is attributable to our tendency to clear forests and drain wetlands for agricultural and settlement goals.

Urban adapters are often found in the matrix of human land uses that occur in suburban landscapes. For plants, early successional species are common in managed suburban habitats, such as residential yards and commercial as well as unmanaged ruderal habitats (e.g., undeveloped lots). These early successional plants include both cultivated species favored by humans (e.g., turfgrass, fast-growing ornamental shrubs, and trees), as well as weedy species that are common in both managed and unmanaged suburban habitats. The most common weedy species are wind-dispersed lawn weeds (e.g., dandelions, crabgrass) and bird-dispersed invasive shrubs (e.g., privet, pokeweed) that commonly grow on cleared, untended landscapes (Crowe 1979). Botanically, suburban landscapes are often characterized as structurally approximating sparsely forested savanna or grassland communities (Dorney et al. 1984). This is apparently an aesthetically preferred landscape for most suburbanites (Henderson et al. 1998).

Among animals, urban adapters typically include many species often referred to as “edge species,” which are adapted to forest edges and surrounding open areas (Whitcomb et al. 1981, Adams 1994). These animals exploit many foods, including human-subsidized foods, such as cultivated plants and garbage. The great abundance of such subsidized foods is one reason why these animal urban adapters often attain an abundance and biomass that is much greater than in natural areas (Adams 1994, Marzluff 2001). Another reason is that natural predators of these animals are usually eliminated by human activities (Gering and Blair 1999).

For birds, urban adapters include a high proportion of certain feeding guilds. These include omnivores and ground foragers, such as the American robin and many corvids (crows, jays); seedeaters such as finches; and aerial sweepers such as swifts (Whitcomb et al. 1981, Beissinger and Osborne 1982, Sears and Anderson 1991, Adams 1994, Johnston 2001). Each of these three guilds seems to be responding to different aspects of human impacts. The highly productive (i.e., fertilized) lawn and ornamental plant ecosystem provides a rich source of invertebrate and plant foods (Falk 1976) for ground gleaners, while seedeaters favor bird feeding stations and many ornamental plants that produce seeds (Adams 1994). Aerial sweepers take advantage of the many open areas, including pavement, over suburban habitats and the high abundance of many flying insects, especially those that are attracted to artificial lights. Tree, shrub, and cavity nesters are also common among urban adapters (Johnston 2001).

As most mammals lack the high mobility of flight possessed by birds, life in suburban environments poses different challenges. Nevertheless, mammalian urban adapters are able to find shelter from intensive human activity as well as exploit rich sources of food provided by humans (Matthiae and Stearns 1981, VanDruff and Rowse 1986, Nilon and VanDruff 1987). One group of mammalian adapters finds refuge through their burrowing habits. Groundhogs, cottontail rabbits, moles, and skunks are examples of successful adaptation to human proximity in suburbia. Trophically, these animals derive much food from the rich subsidies of suburban lawns, including rapidly growing grasses, ornamental plants, and invertebrates (Falk 1976).

Another group of mammal adapters includes species that require adjacent forest fragments (e.g., in cemeteries and parks) for shelter (Dickman 1987). These species typically forage for human-subsidized food supplies in surrounding areas. Some are medium-sized omnivores (especially raccoons and opossums) that forage in garbage, vegetable gardens, and other resources provided by humans. Others are medium-sized carnivores, such as foxes and coyotes, that consume a wide variety of prey. As with birds, elimination of large predators (in addition to subsidized resources) leads to very high population densities of urban adapter mammal species (Crooks and Soulé 1999).

Urban exploiters, often called synanthropes (e.g., Sukopp and Werner 1982, Mackin-Rogalska et al. 1988, Johnston 2001), are very (often totally) dependent on human resources. The abundance of urban exploiters is usually not dependent upon the amount or types of vegetation (Lancaster and Rees 1979, Nilon and VanDruff 1987, Mackin-Rogalska et al. 1988, Johnston 2001). The combination of predator release (predator removal, such as the extermination of wolves and cougars) with abundant food subsidies allows them to attain enormous population densities (Lancaster and Rees 1979, Adams 1994).

Urban exploiters probably represent the most hom*ogenized of the world's biotas (Blair 2001). Unlike urban adapters, which are largely composed of early successional species from nearby ecosystems, urban exploiters are composed of a very small subset of the world's species; these exploiters are well adapted to intensely modified urban environments wherever humans construct them across the planet (Adams 1994, Johnston 2001, Marzluff 2001).

Urban environments typically have more in common with other cities than with adjacent natural ecosystems (Sukopp and Werner 1982), so urban exploiters are often not native to a region (Adams 1994, Kowarik 1995, Blair 2001), but tend to leapfrog from city to city. Thus, rock doves, starlings, house sparrows, Norway rats, and the house mouse are found in all cities in Europe (Mackin-Rogalska et al. 1988) and North America (Adams 1994). This is also true for urban plants (Whitney 1985).

Among plants, urban exploiters tend to be ruderal species that can tolerate high levels of disturbance, especially grasses and annuals (see reviews in Sukopp and Werner 1982, Whitney 1985, Kowarik 1995). Examples include wind-dispersed weeds that colonize abandoned industrial and commercial properties and plants that can grow in and around pavement. Adaptive traits that are typical of urban-exploiting plants include tolerance to high levels of air pollution (especially smog and acidic fog); trampling; and alkaline, compacted, and nitrogenous soils.

Avian urban exploiters are often species evolutionarily adapted to cliff-like rocky areas and therefore are preadapted to the devegetated concrete edifices of very urbanized areas (Lancaster and Rees 1979, Adams 1994). Common examples include the rock dove and peregrine falcon. Another group of avian exploiters consists of cavity-nesting species that are able to inhabit human dwellings. Examples include the house sparrow, house finch, and European starling. Trophically, avian urban exploiters tend to be ground-foraging seedeaters or omnivores (Lancaster and Rees 1979, Adams 1994).

Mammalian urban exploiters find shelter in human dwellings and exploit the rich food sources in or near them. Trophically, they are usually omnivorous (Adams 1994) and include such familiar species as the house mouse, black or brown rat, and insects, including a variety of co*ckroach species.

Increasing nonnative species toward the city.

Many studies have found that the number (and proportion) of nonnative species tends to increase along the urban–rural gradient, moving toward the urban center. In general, the proportion of species that is nonnative goes from less than a few percent in rural areas to over 50% at the urban core. These changing proportions apply to plants in the United States (Whitney 1985) and Europe (Kowarik 1995) and birds in the United States (Blair 2001). The population density of nonnative species—both mammals (Mackin-Rogalska et al. 1988) and birds (Marzluff 2001)—also tends to increase the nearer they are to the urban core.

The increase in nonnative species toward the urban core reflects a number of human causes. One is that higher human population densities nearer the urban core produce increasing importation (“propagule pressure”) of nonnative species, for example, the cultivation of nonnative plants (Mackin-Rogalska et al. 1988, Kowarik 1995). Another cause is the increasing amount of “disturbed” habitat toward the urban core, which provides opportunities for nonnative species of plants (Kowarik 1995, Luken 1997) and animals (Adams 1994, Marzluff 2001) that can utilize the new resources.

Conservation implications of compositional changes

In their book Urban Nature Conservation,Kendle and Forbes (1997) note that, as highly urbanized areas are generally occupied by species that thrive in the presence of humans, there will be relatively few rare native species of conservation concern in areas of high human population density. They review some examples, however, of rare species of insects and plants found in highly urbanized areas; habitat conservation and restoration could be planned for sites that harbor such species. Not surprisingly, most rare species in urbanized areas are found sites that have escaped high-intensity development (Godefroid 2001). Sites where rare species most commonly occur include city parks, cemeteries, railroad trackways, vegetated areas under transmission lines, and other public rights-of-way that are protected from development (Gilbert 1989, Kendle and Forbes 1997).

Aside from the conservation of rare native species, knowledge of the species composition of urban biodiversity can be very useful as an educational tool to better understand the natural world. An enhanced appreciation of nature by the 80% of the American public that lives in this environment could promote more effective political and economic action. Examples of such knowledge include better education of the public in the natural history of local species and problems with nonnative species (Kendle and Forbes 1997).

Conclusions

Urbanization is a rapidly growing cause of many environmental problems (Benfield et al. 1999). The impact of urbanization is documented in the growing literature on the urban–rural gradient. These studies show consistent changes in species richness and species composition along the gradient.

Species richness of many taxa often declines along the gradient, with the lowest richness to be found in the urban core. Urban planners should find ways to preserve biodiversity as cities expand outward and subsequently modify natural habitat. Such efforts would most likely focus on preserving as much remnant natural habitat as possible, as opposed to most current land development techniques, which remove most natural vegetation during construction.

Where intensive land development has already occurred, native animal biodiversity can be increased by revegetation with a diversity of native plant species. Protecting this revegetated habitat from disturbance to allow ecological succession will not only enhance plant and animal diversity but also tend to reduce the diversity of nonnative species. Unfortunately, most current landscaping tends to revegetate with nonnative plant species in unnatural spatial distributions (Henderson et al. 1998, Wasowski and Wasowski 2000) and arrests succession through the management of those ecosystems (at great financial cost; Kendle and Forbes 1997).

Species composition also shows pronounced changes along the urban–rural gradient. Most notable is that nonnative species become proportionately more common toward the urban core. Urban avoiders include native species such as large predators and forest-interior (especially insectivorous) birds that disappear quickly in the initial stages of suburban encroachment, unless special effort is made to retain large tracts of native habitat and reduce human persecution of species.

Urban adapters, mammals and birds that are mainly adapted to forest edges and open areas, flourish in suburban habitats, especially older subdivisions where ecological succession has advanced and produced extensive revegetation. Urban adapters are very important for biodiversity education, because half of the American public lives in a suburban environment (USCB 2001). Public biodiversity education would be most effective if we draw on these familiar suburban community assemblages and species to promote an understanding of concepts such as ecological succession and the role of native plants in promoting native animal diversity. Because of its enormous size, wealth, and political influence, a more ecologically informed suburban population could greatly improve the social support for conservation of native species in all ecosystems.

References cited

1

Adams

CE

Thomas

JK

Lin

P

Weiser

B

.

1987

.

Urban high school students' knowledge of wildlife

. Pages.

83

-

86

. in

Adams

LW

Leedy

DL

, eds.

Integrating Man and Nature in the Metropolitan Environment

.

Columbia (MD)

:

National Institute for Urban Wildlife

.

Google Scholar

OpenURL Placeholder Text

2

Adams

LW

.

1994

.

Urban Wildlife Habitats

.

Minneapolis

:

University of Minnesota Press

.

Google Scholar

OpenURL Placeholder Text

3

Beissinger

SR

Osborne

DR

.

1982

.

Effects of urbanization on avian community organization

.

Condor

.

84

:

75

-

83

.

4

Bell

HL

.

1986

.

Occupation of Urban Habitats by Birds in Papua New Guinea

.

Los Angeles

:

Western Foundation of Vertebrate Zoology

.

Google Scholar

OpenURL Placeholder Text

5

Benfield

FK

Raimi

MD

Chen

DD

.

1999

.

Once There Were Greenfields

.

New York

:

National Resource Defense Council

.

Google Scholar

OpenURL Placeholder Text

6

Blair

RB

.

2001

.

Birds and butterflies along urban gradients in two ecoregions of the U.S

. Pages.

33

-

56

. in

Lockwood

JL

McKinney

ML

, eds.

Biotic hom*ogenization

.

Norwell (MA)

:

Kluwer

.

Google Scholar

OpenURL Placeholder Text

7

Blair

RB

Launer

AE

.

1997

.

Butterfly diversity and human land use: Species assemblages along an urban gradient

.

Biological Conservation

.

80

:

113

-

125

.

8

Clergeau

P

Mennechez

G

Sauvage

A

Lemoine

A

.

2001

.

Human perception and appreciation of birds: A motivation for wildlife conservation in urban environments of France

. Pages.

69

-

86

. in

Marzluff

JM

Bowman

R

Donnelly

R

, eds.

Avian Ecology in an Urbanizing World

.

Norwell (MA)

:

Kluwer

.

Google Scholar

OpenURL Placeholder Text

9

Collins

JP

Kinzig

A

Grimm

NB

fa*gan

WF

Hope

D

Wu

J

Borer

WT

.

2000

.

A new urban ecology

.

American Scientist

.

88

:

416

-

425

.

10

Crisp

PN

Dickinson

KJM

Gibbs

GW

.

1998

.

Does native invertebrate diversity reflect native plant diversity? A case study from New Zealand and implications for conservation

.

Biological Conservation

.

83

:

209

-

220

.

11

Crooks

KR

Soulé

ME

.

1999

.

Mesopredator release and avifaunal extinctions in a fragmented system

.

Letters to Nature

.

563

-

566

.

Google Scholar

OpenURL Placeholder Text

12

Crowe

TM

.

1979

.

Lots of weeds: Insular phytogeography of vacant urban lots

.

Journal of Biogeography

.

6

:

169

-

181

.

13

Czech

B

Krausman

PR

Devers

PK

.

2000

.

Economic associations among causes of species endangerment in the United States

.

BioScience

.

50

:

593

-

601

.

14

Dawe

GFM

.

1995

.

Species density in relation to urban open space

.

Land Contamination and Reclamation

.

3

:

114

-

116

.

Google Scholar

OpenURL Placeholder Text

15

Denys

C

Schmidt

H

.

1998

.

Insect communities on experimental mugwort plots along an urban gradient

.

Oecologia

.

113

:

269

-

277

.

16

Dickman

CR

.

1987

.

Habitat fragmentation and vertebrate species richness in an urban environment

.

Journal of Applied Ecology

.

24

:

337

-

351

.

17

Dorney

JR

Guntenspergen

GR

Keough

JR

Stearns

F

.

1984

.

Composition and structure of an urban woody plant community

.

Urban Ecology

.

8

:

69

-

90

.

18

Falk

JH

.

1976

.

Energetics of a suburban lawn ecosystem

.

Ecology

.

57

:

141

-

150

.

19

Gering

JC

Blair

RB

.

1999

.

Predation on artificial bird nests along an urban gradient: Predation risk or relaxation in urban environments

.

Ecography

.

22

:

532

-

541

.

20

Germaine

SS

Wakeling

BF

.

2001

.

Lizard species distributors and habitat occupation along an urban gradient in Tucson, Arizona, USA

.

Biological Conservation

.

97

:

229

-

237

.

21

Gibson

DJ

Adams

ED

Ely

JS

Gustafson

DJ

McEwen

D

.

2000

.

Eighteen years of herbaceous layer recovery of a recreation area in a mesic forest

.

Journal of the Torrey Botanical Society

.

127

:

230

-

239

.

22

Gilbert

OL

.

1989

.

The Ecology of Urban Habitats

.

London

:

Chapman and Hall

.

Google Scholar

OpenURL Placeholder Text

23

Godefroid

S

.

2001

.

Temporal analysis of the Brussels flora as indicator for changing environmental quality

.

Landscape and Urban Planning

.

52

:

203

-

224

.

24

Goldstein

EL

Gross

M

DeGraaf

RM

.

1986

.

Breeding birds and vegetation: A quantitative assessment

.

Urban Ecology

.

9

:

377

-

385

.

25

Henderson

SPB

Perkins

NH

Nelischer

M

.

1998

.

Residential lawn alternatives: A study of their distribution, form and structure

.

Landscape and Urban Planning

.

42

:

135

-

145

.

26

Johnston

RF

.

2001

.

Synanthropic birds of North America

. Pages.

49

-

67

. in

Marzluff

JM

Bowman

R

Donnelly

R

, eds.

Avian Ecology in an Urbanizing World

.

Norwell (MA)

:

Kluwer

.

Google Scholar

OpenURL Placeholder Text

27

Kellert

SR

.

1996

.

The Value of Life

.

Washington (DC)

:

Island Press

.

Google Scholar

OpenURL Placeholder Text

28

Kendle

T

Forbes

S

.

1997

.

Urban Nature Conservation

.

London

:

Chapman and Hall

.

Google Scholar

OpenURL Placeholder Text

29

Kowarik

I

.

1995

.

On the role of alien species in urban flora and vegetation

. Pages.

85

-

103

. in

Pysek

P

Prach

K

Rejmánek

M

Wade

PM

, eds.

Plant Invasions—General Aspects and Special Problems

.

Amsterdam (Netherlands)

:

SPB Academic

.

Google Scholar

OpenURL Placeholder Text

30

Lancaster

RK

Rees

WE

.

1979

.

Bird communities and the structure of urban habitats

.

Canadian Journal of Zoology

.

57

:

2358

-

2368

.

31

Luken

JO

.

1997

.

Conservation in the context of non-indigenous species

. Pages.

107

-

116

. in

Schwarz

MW

, ed.

Conservation in Highly Fragmented Landscapes

.

London

:

Chapman and Hall

.

Google Scholar

OpenURL Placeholder Text

32

Luniak

M

.

1994

.

The development of bird communities in new housing estates in Warsaw

.

Memorabilia Zoologica

.

49

:

257

-

267

.

Google Scholar

OpenURL Placeholder Text

33

Mackin-Rogalska

R

Pinowski

J

Solon

J

Wojcik

Z

.

1988

.

Changes in vegetation, avifauna, and small mammals in a suburban habitat

.

Polish Ecological Studies

.

14

:

293

-

330

.

Google Scholar

OpenURL Placeholder Text

34

Maeda

T

Maruyama

N

.

1991

.

Early fall urban bird communities of Hobart, Tasmania

.

Yamashina Institute of Ornithology

.

22

:

56

-

69

.

35

Majer

JD

.

1997

.

Invertebrates assist the restoration process: An Australian perspective

. Pages.

212

-

237

. in

Urbanska

KM

Webb

NR

Edwards

PJ

, eds.

Restoration Ecology and Sustainable Development

.

Cambridge (United Kingdom)

:

Cambridge University Press

.

Google Scholar

OpenURL Placeholder Text

36

Marzluff

JM

.

2001

.

Worldwide urbanization and its effects on birds

. Pages.

19

-

47

. in

Marzluff

JM

Bowman

R

Donnelly

R

eds.

Avian Ecology in an Urbanizing World

.

Norwell (MA)

:

Kluwer

.

Google Scholar

OpenURL Placeholder Text

37

Matthiae

PE

Stearns

F

.

1981

.

Mammals in forest islands in southeastern Wisconsin

. Pages.

55

-

66

. in

Burgess

RL

Sharpe

DM

, eds.

Forest Island Dynamics in Man-Dominated Landscapes

.

New York

:

Springer-Verlag

.

Google Scholar

OpenURL Placeholder Text

38

McIntyre

NE

.

2000

.

Ecology of urban arthropods: A review and a call to action

.

Annals of the Entomological Society of America

.

93

:

825

-

835

.

39

Medley

KE

McDonnell

MJ

Pickett

STA

.

1995

.

Forest-landscape structure along an urban-to-rural gradient

.

Professional Geographer

.

47

:

159

-

168

.

40

Mehmood

SR

Zhang

DW

.

2001

.

A roll call analysis of the Endangered Species Act amendments

.

American Journal of Agricultural Economics

.

83

:

501

-

512

.

41

[MDC] Missouri Department of Conservation

.

2002

. Landscaping for backyard wildlife. (3 September 2002; www.conservation.state.mo.us/nathis/backyard).

42

Munyenyembe

FJ

Harris

J

Hone

J

Nix

H

.

1989

.

Determinants of bird populations in an urban area

.

Australian Journal of Ecology

.

14

:

549

-

557

.

43

Nilon

CH

VanDruff

LW

.

1987

.

Analysis of small mammal community data and applications to management of urban greenscapes

.

Proceedings of the National Symposium on Urban Wildlife

.

2

:

53

-

59

.

Google Scholar

OpenURL Placeholder Text

44

Nuhn

TP

Wright

CG

.

1979

.

An ecological survey of ants in a landscaped suburban habitat

.

American Midland Naturalist

.

102

:

353

-

362

.

45

Pawlikowski

T

Pokorniecka

J

.

1990

.

Observations on the structure of bumblebee communities of the town-forest areas in Torun Basin, North Poland

.

Acta Universitatis Nicolai Copernici Biologia

.

37

:

3

-

22

.

Google Scholar

OpenURL Placeholder Text

46

Pickett

STA

Cadenasso

ML

Grove

JM

Nilon

CH

Pouyat

RV

Zipperer

WC

Costanza

R

.

2001

.

Urban ecological systems: Linking terrestrial, ecological, physical, and socioeconomic components of metropolitan areas

.

Annual Review of Ecology and Systematics

.

32

:

127

-

157

.

47

Racey

GD

Euler

DL

.

1982

.

Small mammal and habitat response to shoreline cottage development in central Ontario, Canada

.

Canadian Journal of Zoology

.

60

:

865

-

880

.

48

Sears

AR

Anderson

SH

.

1991

.

Correlation between birds and vegetation in Cheyenne, Wyoming

. Pages.

75

-

80

. in

Adam

LW

Leedy

KL

, eds.

Wildlife Conservation in Metropolitan Environments

.

Columbia (MD)

:

National Institute for Urban Wildlife

.

Google Scholar

OpenURL Placeholder Text

49

Sharpe

DM

Stearns

F

Leitner

LA

Dorney

JR

.

1986

.

Fate of natural vegetation during urban development of rural landscapes in southeastern Wisconsin

.

Urban Ecology

.

9

:

267

-

287

.

50

Shugart

HH

Anderson

SH

Strand

RH

.

1975

.

Dominant patterns in bird populations of the eastern deciduous forest birds

.

Proceedings of the Symposium on Management of Forest and Range Habitats for Nongame Birds

.

2

:

90

-

95

.

Google Scholar

OpenURL Placeholder Text

51

Stein

BA

Kutner

L

Adams

J

.

2000

.

Precious Heritage

.

Oxford (United Kingdom)

:

Oxford University Press

.

Google Scholar

OpenURL Placeholder Text

52

Sukopp

H

Werner

P

.

1982

.

Nature in Cities

.

Strasbourg (France)

:

Council of Europe

.

Google Scholar

OpenURL Placeholder Text

53

Terman

MR

.

1997

.

Natural links: Naturalistic golf courses as wildlife habitat

.

Landscape and Urban Planning

.

38

:

183

-

197

.

54

Tilghman

NG

.

1987

. Characteristics of urban woodlands affecting breeding bird diversity and abundance.

Landscape and Urban Planning

.

14

:

481

-

495

.

55

[USCB] US Census Bureau

.

2001

.

Statistical Abstract of the United States

.

Washington (DC)

:

Government Printing Office

.

Google Scholar

OpenURL Placeholder Text

56

Vale

TR

Vale

GR

.

1976

.

Suburban bird populations in west-central California

.

Journal of Biogeography

.

3

:

157

-

165

.

57

VanDruff

LW

Rowse

RN

.

1986

. Habitat association of mammals in Syracuse, New York.

Urban Ecology

.

9

:

413

-

434

.

58

Wasowski

A

Wasowski

S

.

2000

.

The Landscaping Revolution

.

The Landscaping Revolution

:

Contemporary Books

.

Google Scholar

OpenURL Placeholder Text

59

Whitcomb

RF

Robbins

CS

Lynch

JF

Whitcomb

BL

Klimiewica

MK

Bystrak

D

.

1981

. Pages.

125

-

206

. in

Burgess

RL

Sharpe

DM

, eds.

Forest Island Dynamics in Man-Dominated Landscapes

.

New York

:

Springer-Verlag

.

Google Scholar

OpenURL Placeholder Text

60

Whitney

GG

.

1985

.

A quantitative analysis of the flora and plant communities of a representative midwestern U.S. town

.

Urban Ecology

.

9

:

143

-

160

.

Figure 1.

Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems (1)

Open in new tabDownload slide

Amount of land covered in the lower 48 states, by category. Source: All data are from Statistical Abstract of the United States for the years shown, except for Nature Conservancy data, which is from Stein and colleagues (2000).

Figure 2.

Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems (2)

Open in new tabDownload slide

Urban–rural gradient. This is a very generalized and simplified depiction of changes in surface area, species richness, and composition, as compiled from a number of sources discussed in the text. Two basic conservation strategies with respect to urban sprawl are shown at the top.

Author notes

Michael L. McKinney (e-mail: mmckinney@utk.edu) is a professor of geological sciences and director of the Environmental Studies Program at the Department of Geological Sciences, University of Tennessee–Knoxville, Knoxville, TN 37996. His current research interests focus on the impacts of urbanization on biodiversity. In addition to his professorial responsibilities at the university, he strives to educate the general public about conservation in all ecosystems.

© 2002 American Institute of Biological Sciences

Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems (2024)

FAQs

How does urbanization affect native species? ›

Urban expansion may lead to habitat fragmentation, potentially resulting in genetic or demographic isolation of native species (Ricketts 2001). A major impact of the expansion of urban areas on native species is on their dispersal through changes in habitat configuration and connectivity {Bierwagen 2007).

How can urbanization affect animal development? ›

Urban development destroys and fragments habitat, the process of dividing continuous habitats into smaller isolated patches, compromising or eliminating traditional migratory paths and putting animal populations at risk.

How does urbanization affect habitat quality and quantity? ›

Answer and Explanation:

Urbanization leads to a reduction of both habitat quantity and habitat quality for most species. This is because urban areas present several challenges to animals. These challenges include the hard surfaces which characterize urban areas that are an impediment to burrowing animals.

What is the most effective way to conserve biodiversity? ›

Can YOU help biodiversity ?
  • Make wildlife welcome. Support the birds, reptiles, mammals, and plants that live in your neighborhood. ...
  • Protect Habitats. ...
  • Volunteer your time. ...
  • Harness your housepets. ...
  • Be a smart shopper. ...
  • Reduce, reuse, recycle ! ...
  • Leave wild things in the wild. ...
  • Learn about other cultures.

Why is urbanization bad for wildlife? ›

Urbanization can impact the Earth system in a variety of ways, including: Causing habitat loss and deforestation, which can decrease species populations, ranges, biodiversity, and alter interactions among organisms.

What species are most affected by urbanization? ›

Larger-bodied animals, such as cougars and elk, were also more negatively affected by urbanization than smaller ones, the researchers found. That may be because larger animals require more space to roam. “Although there is plenty of habitat within cities, it's often pretty broken up,” Dr. Haight said.

How does urbanization affect species diversity? ›

Urban areas tend to support more invasive species, with the proportion of invasive species typically increasing with the degree of urbanization (12). Urban land can also drive phenotypic adaptations, producing rapid ecoevolutionary change (15). These impacts to biota contribute to global biodiversity declines.

How does urbanization reduce biodiversity? ›

The process of urbanization produces an inversion of landscape patterns which become dominated by anthropic habitats. This entails a reduction and fragmentation of natural habitats, and the emergence of strong barrier effects that hinder or even prevent the movement of organisms and ecological connectivity.

How do species respond to urbanization? ›

- Depending on their ability to move and adapt, different groups of wildlife respond differently to the pressures of urbanization. - Due to the alteration of the watershed, and the introduction of chemical contaminants, sensitive aquatic species such as amphibians decline or disappear.

What are 4 ways we can protect biodiversity? ›

Support local and regional projects aimed at tackling biodiversity loss. Buying fewer products and making sure the products you do buy minimise the impact on biodiversity. Investing in ways that promote biodiversity. Reducing waste of consumer goods: food, clothes, electrical appliances, etc.

What are the 4 main ways that biodiversity is reduced? ›

Main reasons for biodiversity loss
  • Changes in land use (e.g. deforestation, intensive mono-culture, urbanisation)
  • Direct exploitation such as hunting and over-fishing.
  • Climate change.
  • Pollution.
  • Invasive alien species.
Jan 16, 2020

What are 3 ways humans can reduce biodiversity? ›

Second is overexploitation (overfishing, overhunting and overharvesting) for things like food, medicines and timber which drives around 20%. Climate change is the third most significant direct driver of biodiversity loss, which together with pollution accounts for 14%. Invasive alien species account for 11%.

How does urbanization affect species richness? ›

... Extreme urbanization decreases the species richness of various birds, mammals, reptiles, amphibians, invertebrates and plants triggering biotic hom*ogenization which can lead to the extinction and loss of many native species (McKinney 2006 (McKinney , 2008 Pal et al. 2019).

How does urbanization influence the abundance and diversity of native plant and animal species in cities? ›

In general, urbanization reduces the richness of plant species and pollinators' availability. It also hom*ogenizes the environment, promotes the invasion of non-native species, causes changes in phenological events, and presents difficulties for plant growth.

How does urbanization affect the people and the natural environment? ›

Urban development can magnify the risk of environmental hazards such as flash flooding. Pollution and physical barriers to root growth promote loss of urban tree cover. Animal populations are inhibited by toxic substances, vehicles, and the loss of habitat and food sources.

Top Articles
Latest Posts
Article information

Author: Geoffrey Lueilwitz

Last Updated:

Views: 6334

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Geoffrey Lueilwitz

Birthday: 1997-03-23

Address: 74183 Thomas Course, Port Micheal, OK 55446-1529

Phone: +13408645881558

Job: Global Representative

Hobby: Sailing, Vehicle restoration, Rowing, Ghost hunting, Scrapbooking, Rugby, Board sports

Introduction: My name is Geoffrey Lueilwitz, I am a zealous, encouraging, sparkling, enchanting, graceful, faithful, nice person who loves writing and wants to share my knowledge and understanding with you.