Implement discrete transfer function - Simulink (2024)

Table of Contents
Description Specifying Initial States Examples Ports Input u — Input signalscalar | vector | matrix Num — Numerator coefficients scalar | vector | matrix Den — Denominator coefficients scalar | vector | matrix External reset — External reset signal scalar x0 — Initial states scalar | vector | matrix Output Port_1 — Output signalscalar | vector | matrix Parameters Main Numerator Source — Source of numerator coefficientsDialog (default) | Input port Numerator Value — Numerator coefficients [1] (default) | scalar | vector | matrix Denominator Source — Source of denominator coefficients Dialog (default) | Input port Denominator Value — Denominator coefficients [1 0.5] (default) | scalar | vector | matrix Initial states Source — Source of initial states Dialog (default) | Input port Initial states Value — Initial filter states 0 (default) | scalar | vector | matrix External reset — External state reset None (default) | Rising | Falling | Either | Level | Level hold Input processing — Sample- or frame-based processing Elements as channels (samplebased) (default) | Columns as channels (frame based) Optimize by skipping divide by leading denominator coefficient (a0) — Skip divide by a0 off (default) | on Sample time (-1 for inherited) — Interval between samples -1 (default) | scalar | vector Data Types State — State data typeInherit: Same as input (default) | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type expression> Numerator coefficients — Numerator coefficient data type Inherit: Inherit via internalrule (default) | int8 | int16 | int32 | int64 | fixdt(1,16) | fixdt(1,16,0) | <data type expression> Numerator coefficient minimum — Minimum value of numerator coefficients [] (default) | scalar Numerator coefficient maximum — Maximum value of numerator coefficients [] (default) | scalar Numerator product output — Numerator product output data type Inherit: Inherit via internalrule (default) | Inherit: Same as input | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type expression> Numerator accumulator — Numerator accumulator data type Inherit: Inherit via internalrule (default) | Inherit: Same as input | Inherit: Same as product output | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type expression> Denominator coefficients — Denominator coefficient data type Inherit: Inherit via internalrule (default) | int8 | int16 | int32 | int64 | fixdt(1,16) | fixdt(1,16,0) | <data type expression> Denominator coefficient minimum — Minimum value of denominator coefficients [] (default) | scalar Denominator coefficient maximum — Maximum value of denominator coefficients [] (default) | scalar Denominator product output — Denominator product output data type Inherit: Inherit via internalrule (default) | Inherit: Same as input | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type expression> Denominator accumulator — Denominator accumulator data type Inherit: Inherit via internalrule (default) | Inherit: Same as input | Inherit: Same as product output | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type expression> Output — Output data type Inherit: Inherit via internalrule (default) | Inherit: Same as input | int8 | int16 | int32 | int64 | fixdt(1,16) | fixdt(1,16,0) | <data type expression> Output minimum — Minimum value of output [] (default) | scalar Output maximum — Maximum value of output [] (default) | scalar Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools from overriding data types off (default) | on Integer rounding mode — Rounding mode for fixed-point operationsFloor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero Saturate on integer overflow — Method of overflow action off (default) | on State Attributes State name — Unique name for block state'' (default) | alphanumeric string State name must resolve to Simulink signal object — Require state name resolve to a signal objectoff (default) | on Block Characteristics Extended Capabilities C/C++ Code Generation Generate C and C++ code using Simulink® Coder™. HDL Code GenerationGenerate VHDL, Verilog and SystemVerilog code for FPGA and ASIC designs using HDL Coder™. PLC Code Generation Generate Structured Text code using Simulink® PLC Coder™. Fixed-Point ConversionDesign and simulate fixed-point systems using Fixed-Point Designer™. Version History R2024a: The Discrete Transfer Fcn block supports variable-size inputsignals R2023b: Conditional display of the Sample time parameter See Also Topics MATLAB Command Americas Europe Asia Pacific

Implement discrete transfer function

expand all in page

  • Implement discrete transfer function - Simulink (1)

Libraries:
Simulink / Discrete
HDL Coder / Discrete
HDL Coder / HDL Floating Point Operations

Description

The Discrete Transfer Fcn block implements the z-transformtransfer function as follows:

H(z)=num(z)den(z)=num0zm+num1zm1+...+nummden0zn+den1zn1+...+denn

where m+1 and n+1 are the number of numerator and denominator coefficients,respectively. num and den contain the coefficientsof the numerator and denominator in descending powers of z.num can be a vector or matrix, while den mustbe a vector. The order of the denominator must be greater than or equal to the order ofthe numerator.

Specify the coefficients of the numerator and denominator polynomials in descending powersof z. This block lets you use polynomials in z torepresent a discrete system, a method that control engineers typically use. Conversely,the Discrete Filter block lets you use polynomials inz-1 (the delay operator) torepresent a discrete system, a method that signal processing engineers typically use.The two methods are identical when the numerator and denominator polynomials have thesame length.

The Discrete Transfer Fcn block applies the z-transformtransfer function to each independent channel of the input. The Inputprocessing parameter allows you to specify whether the block treats eachcolumn of the input as an individual channel (frame-based processing) or each element ofthe input as an individual channel (sample-based processing). To perform frame-basedprocessing, you must have a DSP System Toolbox™ license.

Specifying Initial States

Use the Initial states parameter to specify the initial filter states.The initial states you specify are the initial conditions of the unit delay blocksthat are used in the filter digram implementing the discrete transferfunction.

To determine the number of initial states you must specify and how to specifythem, use the following tables.

Frame-Based Processing

Input Number of ChannelsValid Initial States (Dialog Box)Valid Initial States (Input Port)
  • Column vector (K-by-1)

  • Unoriented vector (K)

1
  • Scalar

  • Column vector (M-by-1)

  • Row vector (1-by-M)

  • Scalar

  • Column vector (M-by-1)

  • Row vector (1-by-N)

  • Matrix (K-by-N)

N
  • Scalar

  • Column vector (M-by-1)

  • Row vector (1-by-M)

  • Matrix (M-by-N)

  • Scalar

  • Matrix (M-by-N)

Sample-Based Processing

InputNumber of ChannelsValid Initial States (Dialog Box)Valid Initial States (Input Port)
  • Scalar

1
  • Scalar

  • Column vector (M-by-1)

  • Row vector (1-by-M)

  • Scalar

  • Column vector (M-by-1)

  • Row vector (1-by-M)

  • Row vector (1-by-N)

  • Column vector (N-by-1)

  • Unoriented vector (N)

N
  • Scalar

  • Column vector (M-by-1)

  • Row vector (1-by-M)

  • Matrix (M-by-N)

  • Scalar

  • Matrix (K-by-N)

K×N
  • Scalar

  • Column vector (M-by-1)

  • Row vector (1-by-M)

  • Matrix (M-by-(K×N))

  • Scalar

When the Initial states is a scalar, the block initializes all filterstates to the same scalar value. To initialize all states to zero, enter0. When the Initial states is a vectoror a matrix, each vector or matrix element specifies a unique initial state for acorresponding delay element in a corresponding channel:

  • The vector length must equal the number of delay elements in thefilter, M = max(number of zeros, number ofpoles).

  • The matrix must have the same number of rows as the number of delayelements in the filter, M = max(number of zeros, number ofpoles). The matrix must also have one column for eachchannel of the input signal.

The following example shows the relationship between the initial filter output and theinitial input and state. Given an initial inputu1, the first outputy1 is related to the initial state[x1,x2] and initial input by asfollows:

y1=4x1x2=1/2(u13x1)

Implement discrete transfer function - Simulink (2)

Examples

Designing a High Angle of Attack Pitch Mode ControlUse the Control System Toolbox™ and Simulink® Control Design™ to interact with Simulink to design a digital pitch control for the aircraft. In this example, we will design the controller to permit the aircraft to operate at a high angle of attack with minimal pilot workload.

Open Model

Ports

Input

expand all

Input signal, specified as a scalar, vector, or matrix.

When you set the Inputprocessing parameter to Columns as channels(frame based), the block supports variable-size inputsignals, that is, you can change the frame size (number of rows) of thesignal during simulation but the number of channels (columns) mustremain constant. (since R2024a)

Data Types: single | double | int8 | int16 | int32 | fixed point

Coefficients of the numerator polynomial specified as a vector or matrix in descendingpowers of z. Use a row vector to specify thecoefficients for a single numerator polynomial. Use a matrix to specifycoefficients for multiple filters to be applied to the same input. Eachmatrix row represents a set of filter taps. The order of the denominatormust be greater than or equal to the order of the numerator.

Dependencies

To enable this port, set Numerator Source toInput port.

Numerator and denominator coefficients must have the samecomplexity. They can have different word lengths and fractionlengths.

Data Types: single | double | int8 | int16 | int32 | fixed point

Coefficients of the denominator polynomial specified as a vector in descending powers ofz. Use a row vector to specify the coefficientsfor a single denominator polynomial. Use a matrix to specifycoefficients for multiple filters to be applied to the same input. Eachmatrix row represents a set of filter taps. The order of the denominatormust be greater than or equal to the order of the numerator. The leadingdenominator coefficient cannot be 0.

Dependencies

To enable this port, set Denominator Sourceto Input port.

Numerator and denominator coefficients must have the samecomplexity. They can have different word lengths and fractionlengths.

Data Types: single | double | int8 | int16 | int32 | fixed point

External reset signal, specified as a scalar. When the specifiedtrigger event occurs, the block resets the states to their initial conditions.

Tip

The icon for this port changes based on the value of theExternal reset parameter.

Dependencies

To enable this port, set External reset toRising,Falling,Either,Level, or Levelhold.

Limitations

The reset signal must be a scalar of type single, double, Boolean, or integer.Fixed-point data types, except for ufix1, are notsupported.

Data Types: single | double | Boolean | int8 | int16 | int32 | fixed point

Initial states, specified as a scalar, vector, or matrix. For more information aboutspecifying states, see Specifying Initial States. States are complex wheneither the input or the coefficients are complex.

Dependencies

To enable this port, set Initial statesSource to Inputport.

Data Types: single | double | int8 | int16 | int32 | fixed point

Output

expand all

Output signal specified as a scalar, vector, or matrix.

When you set Sample time to-1, sample time of the output signal is same as thesample time of the input signal u.

Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters

expand all

Main

Specify the source of the numerator coefficients asDialog or Inputport.

Programmatic Use

Block Parameter:NumeratorSource
Type: character vector
Values:'Dialog' | 'Input port'
Default:'Dialog'

Numerator coefficients of the discrete transfer function. To specify the coefficients,set the Source toDialog. Then, enter the coefficients inValue as descending powers ofz. Use a row vector to specify the coefficientsfor a single numerator polynomial. Use a matrix to specify coefficientsfor multiple filters to be applied to the same input. Each matrix rowrepresents a set of filter taps.

Dependencies

To enable this parameter, set the NumeratorSource to Dialog.

Programmatic Use

Block Parameter:Numerator
Type: character vector
Values: scalar | vector |matrix
Default:'[1]'

Specify the source of the denominator coefficients asDialog or Inputport.

Programmatic Use

Block Parameter:DenominatorSource
Type: character vector
Values:'Dialog' | 'Input port'
Default:'Dialog'

Denominator coefficients of the discrete transfer function. To specifythe coefficients, set the Source toDialog. Then, enter the coefficients inValue as descending powers ofz. Use a row vector to specify the coefficientsfor a single denominator polynomial. Use a matrix to specifycoefficients for multiple filters to be applied to the same input. Eachmatrix row represents a set of filter taps.

Dependencies

To enable this parameter, set the DenominatorSource to Dialog.

Programmatic Use

Block Parameter:Denominator
Type: character vector
Values: scalar | vector |matrix
Default:'[1 0.5]'

Specify the source of the initial states asDialog or Inputport.

Programmatic Use

Block Parameter:InitialStatesSource
Type: character vector
Values:'Dialog' | 'Input port'
Default:'Dialog'

Specify the initial filter states as a scalar, vector, or matrix. Tolearn how to specify initial states, see Specifying Initial States.

Dependencies

To enable this parameter, set Initial statesSource to Dialog.

Programmatic Use

Block Parameter:InitialStates
Type: character vector
Values: scalar | vector |matrix
Default:'0'

Specify the trigger event to use to reset the states to the initial conditions.

Reset ModeBehavior
NoneNo reset
RisingReset on a rising edge
FallingReset on a falling edge
EitherReset on either a rising or falling edge
Level

Reset in either of these cases:

  • When the reset signal is nonzero at the current time step

  • When the reset signal value changes from nonzero at the previous time step to zero at the current time step

Level holdReset when the reset signal is nonzero at the current time step

Programmatic Use

Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Specify whether the block performs sample- or frame-basedprocessing.

  • Elements as channels (sample based)— Process each element of the input as an independentchannel.

  • Columns as channels (frame based)— Process each column of the input as an independentchannel.

    Note

    Frame-based processing requires a DSP System Toolbox license.

    For more information, see Sample- and Frame-Based Concepts (DSP System Toolbox).

Programmatic Use

Block Parameter:InputProcessing
Type: character vector
Values:'Elements as channels (sample based)' | 'Columns aschannels (frame based)'
Default:'Elements as channels (samplebased)'

Select when the leading denominator coefficient,a0, equals 1. Thisparameter optimizes your code.

When you select this check box, the block does not perform adivide-by-a0 either insimulation or in the generated code. An error occurs if you specify thedenominator coefficients in the block dialog box anda0 ≠ 1.

When you clear this check box, the block is fully tunable duringsimulation, and performs adivide-by-a0 in bothsimulation and code generation.

Programmatic Use

Block Parameter:a0EqualsOne
Type: character vector
Values:'off' | 'on'
Default:'off'

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. For more information, see Specify Sample Time.

Dependencies

This parameter is visible only if you set it to a value other than -1. To learn more, see Blocks for Which Sample Time Is Not Recommended.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Data Types

Specify the state data type. You can set it to:

  • A rule that inherits a data type, for example,Inherit: Same as input

  • A built-in integer, for example,int8

  • A data type object, for example, aSimulink.NumericType object

  • An expression that evaluates to a data type, for example,fixdt(1,16,0)

The Data Type Assistant helps you set dataattributes. To use the Data Type Assistant, click Implement discrete transfer function - Simulink (4). For more information, see Specify Data Types Using Data Type Assistant.

Programmatic Use

Block Parameter:StateDataTypeStr
Type: character vector
Values:'Inherit: Same as input' | 'int8' | 'int16' | 'int32' |'int64' | 'fixdt(1,16,0)' | '<data typeexpression>'
Default:'Inherit: Same as input'

Specify the numerator coefficient data type. You can set it to:

  • A rule that inherits a data type, for example,Inherit: Inherit via internalrule

  • A built-in integer, for example,int8

  • A data type object, for example, aSimulink.NumericType object

  • An expression that evaluates to a data type, for example,fixdt(1,16,0)

The Data Type Assistant helps you set dataattributes. To use the Data Type Assistant, click Implement discrete transfer function - Simulink (5). For more information, see Specify Data Types Using Data Type Assistant.

Programmatic Use

Block Parameter: NumCoefDataTypeStr
Type: character vector
Values:'Inherit: Inherit via internal rule' | 'int8' | 'int16'| 'int32' | 'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |'<data type expression>'
Default:'Inherit: Inherit via internal rule'

Specify the minimum value that a numerator coefficient can have. Thedefault value is [] (unspecified). Simulink® software uses this value to perform:

Programmatic Use

Block Parameter:NumCoefMin
Type: character vector
Values: scalar
Default:'[]'

Specify the maximum value that a numerator coefficient can have. Thedefault value is [] (unspecified). Simulink software uses this value to perform:

  • Parameter range checking (see Specify Minimum and Maximum Values for Block Parameters)

  • Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter:NumCoefMax
Type: character vector
Values: scalar
Default:'[]'

Specify the product output data type for the numerator coefficients.You can set it to:

  • A rule that inherits a data type, for example,Inherit: Inherit via internalrule

  • A built-in data type, for example,int8

  • A data type object, for example, aSimulink.NumericType object

  • An expression that evaluates to a data type, for example,fixdt(1,16,0)

The Data Type Assistant helps you set dataattributes. To use the Data Type Assistant, click Implement discrete transfer function - Simulink (6). For more information, see Specify Data Types Using Data Type Assistant.

Programmatic Use

Block Parameter:NumProductDataTypeStr
Type: character vector
Values:'Inherit: Inherit via internal rule' | 'Inherit: Sameas input' | 'int8' | 'int16' | 'int32' | 'int64' |'fixdt(1,16,0)' | '<data typeexpression>'
Default:'Inherit: Inherit via internal rule'

Specify the accumulator data type for the numerator coefficients. Youcan set it to:

  • A rule that inherits a data type, for example,Inherit: Inherit via internalrule

  • A built-in data type, for example,int8

  • A data type object, for example, aSimulink.NumericType object

  • An expression that evaluates to a data type, for example,fixdt(1,16,0)

The Data Type Assistant helps you set dataattributes. To use the Data Type Assistant, click Implement discrete transfer function - Simulink (7). For more information, see Specify Data Types Using Data Type Assistant.

Programmatic Use

Block Parameter:NumAccumDataTypeStr
Type: character vector
Values:'Inherit: Inherit via internal rule' | 'Inherit: Sameas input' | 'Inherit: Same as product output' | 'int8' |'int16' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<datatype expression>'
Default:'Inherit: Inherit via internal rule'

Specify the denominator coefficient data type. You can set itto:

  • A rule that inherits a data type, for example,Inherit: Inherit via internalrule

  • A built-in integer, for example,int8

  • A data type object, for example, aSimulink.NumericType object

  • An expression that evaluates to a data type, for example,fixdt(1,16,0)

The Data Type Assistant helps you set dataattributes. To use the Data Type Assistant, click Implement discrete transfer function - Simulink (8). For more information, see Specify Data Types Using Data Type Assistant.

Programmatic Use

Block Parameter:DenCoefDataTypeStr
Type: character vector
Values:'Inherit: Inherit via internal rule' | 'int8' | 'int16'| 'int32' | 'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |'<data type expression>'
Default:'Inherit: Inherit via internal rule'

Specify the minimum value that a denominator coefficient can have. Thedefault value is [] (unspecified). Simulink software uses this value to perform:

  • Parameter range checking (see Specify Minimum and Maximum Values for Block Parameters)

  • Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter:DenCoefMin
Type: character vector
Values: scalar
Default:'[]'

Specify the maximum value that a denominator coefficient can have. Thedefault value is [] (unspecified). Simulink software uses this value to perform:

  • Parameter range checking (see Specify Minimum and Maximum Values for Block Parameters)

  • Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter:DenCoefMax
Type: character vector
Values: scalar
Default:'[]'

Specify the product output data type for the denominator coefficients.You can set it to:

  • A rule that inherits a data type, for example,Inherit: Inherit via internalrule

  • A built-in data type, for example,int8

  • A data type object, for example, aSimulink.NumericType object

  • An expression that evaluates to a data type, for example,fixdt(1,16,0)

The Data Type Assistant helps you set dataattributes. To use the Data Type Assistant, click Implement discrete transfer function - Simulink (9). For more information, see Specify Data Types Using Data Type Assistant.

Programmatic Use

Block Parameter:DenProductDataTypeStr
Type: character vector
Values:'Inherit: Inherit via internal rule' | 'Inherit: Sameas input' | 'int8' | 'int16' | 'int32' | 'int64' |'fixdt(1,16,0)' | '<data typeexpression>'
Default:'Inherit: Inherit via internal rule'

Specify the accumulator data type for the denominator coefficients.You can set it to:

  • A rule that inherits a data type, for example,Inherit: Inherit via internalrule

  • A built-in data type, for example,int8

  • A data type object, for example, aSimulink.NumericType object

  • An expression that evaluates to a data type, for example,fixdt(1,16,0)

The Data Type Assistant helps you set dataattributes. To use the Data Type Assistant, click Implement discrete transfer function - Simulink (10). For more information, see Specify Data Types Using Data Type Assistant.

Programmatic Use

Block Parameter:DenAccumDataTypeStr
Type: character vector
Values:'Inherit: Inherit via internal rule' | 'Inherit: Sameas input' | 'Inherit: Same as product output' | 'int8' |'int16' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<datatype expression>'
Default:'Inherit: Inherit via internal rule'

Specify the output data type. You can set it to:

  • A rule that inherits a data type, for example,Inherit: Inherit via internalrule

  • A built-in data type, for example,int8

  • A data type object, for example, aSimulink.NumericType object

  • An expression that evaluates to a data type, for example,fixdt(1,16,0)

The Data Type Assistant helps you set dataattributes. To use the Data Type Assistant, click Implement discrete transfer function - Simulink (11). For more information, see Specify Data Types Using Data Type Assistant.

Programmatic Use

Block Parameter:OutDataTypeStr
Type: character vector
Values:'Inherit: Inherit via internal rule' | 'Inherit: Sameas input' | 'int8' | 'int16' | 'int32' | 'int64' |'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data typeexpression>'
Default:'Inherit: Inherit via internal rule'

Specify the minimum value that the block can output. The default valueis [] (unspecified). Simulink uses this value to perform:

  • Simulation range checking (see Specify Signal Ranges)

  • Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter:OutMin
Type: character vector
Values: scalar
Default:'[]'

Specify the maximum value that the block can output. The default valueis [] (unspecified). Simulink uses this value to perform:

  • Simulation range checking (see Specify Signal Ranges)

  • Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter:OutMax
Type: character vector
Values: scalar
Default:'[]'

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on this block. For more information, see Lock the Output Data Type Setting (Fixed-Point Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Specify the rounding mode for fixed-point operations. For more information, see Rounding (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block parameter, enter an expression using a MATLAB® rounding function into the mask field.

Programmatic Use

Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'

Specify whether overflows saturate or wrap.

ActionRationaleImpact on OverflowsExample

Select this check box (on).

Your model has possible overflow, and you want explicit saturation protection in the generated code.

Overflows saturate to either the minimum or maximum value that the data type can represent.

The maximum value that the int8 (signed, 8-bit integer) data type can represent is 127. Any block operation result greater than this maximum value causes overflow of the 8-bit integer. With the check box selected, the block output saturates at 127. Similarly, the block output saturates at a minimum output value of -128.

Do not select this check box (off).

You want to optimize efficiency of your generated code.

You want to avoid overspecifying how a block handles out-of-range signals. For more information, see Troubleshoot Signal Range Errors.

Overflows wrap to the appropriate value that is representable by the data type.

The maximum value that the int8 (signed, 8-bit integer) data type can represent is 127. Any block operation result greater than this maximum value causes overflow of the 8-bit integer. With the check box cleared, the software interprets the overflow-causing value as int8, which can produce an unintended result. For example, a block result of 130 (binary 1000 0010) expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just the output, or result. Usually, the code generation process can detect when overflow is not possible. In this case, the code generator does not produce saturation code.

Programmatic Use

Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is blank, no name is assigned. When using this parameter, remember these considerations:

  • A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or underscore characters.

  • The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click Apply.

For more information, see C Data Code Interface Configuration for Model Interface Elements (Simulink Coder).

Programmatic Use

Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the model configuration parameter Signal resolution to a value other than None.

Programmatic Use

Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics

Data Types

double | fixed pointa | integera | single

Direct Feedthrough

no

Multidimensional Signals

no

Variable-Size Signals

yes

Zero-Crossing Detection

no

aThis block only supports signed fixed-point data types.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

This block only supports signed fixed-point data types.

Version History

Introduced before R2006a

expand all

The Discrete Transfer Fcn block no longer displays the Sampletime parameter in the block parameters dialog box by default. Theparameter is visible only if you set the sample time to a value other the defaultvalue (-1) at the command line or in an existing model. For moreinformation, see Blocks for Which Sample Time Is Not Recommended.

See Also

Discrete Filter | Transfer Fcn

Topics

  • Working with States
  • C Data Code Interface Configuration for Model Interface Elements (Simulink Coder)

MATLAB Command

You clicked a link that corresponds to this MATLAB command:

 

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

Implement discrete transfer function - Simulink (12)

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

Contact your local office

Implement discrete transfer function - Simulink (2024)
Top Articles
Latest Posts
Article information

Author: Rob Wisoky

Last Updated:

Views: 6521

Rating: 4.8 / 5 (68 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Rob Wisoky

Birthday: 1994-09-30

Address: 5789 Michel Vista, West Domenic, OR 80464-9452

Phone: +97313824072371

Job: Education Orchestrator

Hobby: Lockpicking, Crocheting, Baton twirling, Video gaming, Jogging, Whittling, Model building

Introduction: My name is Rob Wisoky, I am a smiling, helpful, encouraging, zealous, energetic, faithful, fantastic person who loves writing and wants to share my knowledge and understanding with you.